If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7k^2-35k+34=0
a = 7; b = -35; c = +34;
Δ = b2-4ac
Δ = -352-4·7·34
Δ = 273
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-35)-\sqrt{273}}{2*7}=\frac{35-\sqrt{273}}{14} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-35)+\sqrt{273}}{2*7}=\frac{35+\sqrt{273}}{14} $
| -8+y=72 | | (7x+2)+(4x-2)+(3x-2)=180 | | -312=6y | | 2y+13=32 | | 4x-8=126 | | -5x+7(3x-12)=12 | | 1/4x-8=1/3x-19 | | 0=x⁴-15x²-16 | | 8+4x=4x+10 | | h·0.6=5.4 | | 7(2)-3=2(2)+7;11=11;x=2 | | F(x)=-x^2+4x+5 | | x=3x+8=98 | | 1/4x-8=1/3(x-19) | | 2(2x+3)-(x+2)=8 | | 3x=-303x=−30 | | 8x+31+16-9=180 | | -3(x-1)=96 | | 3g+2g-11g+15g=-18 | | 6/x=5/100 | | 383=15n+85 | | -2t+10=14 | | 2.3x=2.25 | | -3(x–1)=96 | | 7c+6c-18c=-10 | | 0.79+24=1.19t | | -3x+32=-2(5-4x) | | 4x+9=8x−27 | | Y=-2(x-5)(x+17 | | -2(m-5)+7m=-5 | | x^2-4^1/4=x | | 6y=8+2y |